
This document briefly explains how to create your own SSL Certificate for use in a
server. This allows you to use a secure connection to communicate with your server.

SSL Certificates are based on 'Trust'. "who do you trust" to guarantee that no one has
any access to your root certificate, that would enable someone to 'clone' or 'duplicate' a
certificate, or create a new certificate using stolen credentials.

It's all based on Risk Management. "How far are you willing to go to ensure security".
For some home owners, it means putting a lock on the front door. For other

homeowners, it means putting 5 deadbolts on the door and a fancy security system.
Each 'entity' (personal or professional) should have a 'security policy' that determines

what they can/should do to prevent a catastrophic breach of security.

For most of us, it means putting an SSL Certificate on your server to ensure secure
server/client communications.

Commercial SSL certs cost between $50-100 US Dollars. Sometimes more, occasionally
less. But for a hobbyist, or a low end provider, sometimes security isn't as critical as low
cost. In these instances, there is nothing to keep you from creating your own certificate.

Here's how.

Oh, and although I'm talking about 'web' SSL for the most part, the underlying technology
applies for email and other protocols. A certificate is issued to a particular server FQDN.
There is nothing holding you back from running multiple services securely as long as the
FQDN matches.

Note: I work with Mac, Windows, and Linux. This particular tutorial will be working in a
Windows 7 environment. If you're using a Mac or a Linux machine, the steps will be
'similar' but not always the same. Caution should be excersized to ensure correct steps
are taken regardless of your environment. Other windows versions will be very similar,
with some differences in 'location' due to subtle differences in Windows Versions. Don't
be afraid to stop and google something particular to your environment.

Creating your own SSL Certificate

Page 1Creating your own SSL Certificate - Smug Wimp Tutorials

Excuse me, what in the heck are we talking about?

Once upon a time, when the internet was young, people shared ideas and information. They gave of
themselves freely, and a great void was being filled at an astronomical rate. Then came spammers,
hackers and viruses, and other man-made chaotic occurances, and people had to start tightening up
their resources to keep from being abused. Data sharing became much more cumbersome. And now
'real' information is a lot harder to come by. You typically have to register somewhere, and provide
credentials. At minimum a username and password. Sometimes financial information.

In the old days, there wasn't much security, because there wasn't much need. Now there is. A lot.
Before, a hacker could 'listen' to a server port, and siphon all the data from any requests and
transactions. Later, they would sift through the data for usernames and passwords. For unsecured
sites, this still presents a security issue. So they developed 'SSL', secure socket layers. In a nutshell, a
protective 'tunnel' between your client and the server.

What happens in a basic sense is, the server will determine if the requested address is http (regular
web traffic) or https (secure web traffic). Typically what occurs is the server will 'redirect' all requests to
https. Not always, but usually. It's safer that way. But I digress...

So, the server gets an https request, or a 'secure web page request'. In this example, let's say it's a
login page. Without SSL, your login name and password would be sent 'in the clear'. With SSL, an
encrypted 'tunnel' is created, and any data travelling to and from the server will be encrypted and
protected by that tunnel. So your login name and password are protected against any 'sniffers' trying to
break into a system.

"Usually" but not always, a site SSL Certificate will have been issued by an entity that has already been
placed in your root store. In fact, almost all of them have. otherwise you would get alerts all the time.
The SSL Certificate we create will not have gone through all the vetting that a commercial provider

must. Thus, our certificates will not be in the root store. Every time a new user visits our site (or a
returning user who chose not to trust our cert) will get an alert notifying them of an issue with the
certificate. "The Issue" is that the Root Server (the one we're going to create) is not in the Trusted Root
Store. They will have an option to add the certificate, or not. Sometimes (depending on the browser)
they can continue browsing, but the certificate is not stored, and each visit will bring a new alert dialog.

Creating your own SSL Certificate

Page 2Creating your own SSL Certificate - Smug Wimp Tutorials

Creating your own SSL Certificate

Page 3Creating your own SSL Certificate - Smug Wimp Tutorials

A Quick word about 'Ports'

A server 'Port' is a network connection for services. There are thousands of ports available to a server.
Ports are organized and assigned for the most part. Those that have official 'assignments' are called

'standard ports'. Those that do not have a designation are called 'non-standard ports'. There are far
more 'non-standard' ports available than have been assigned.

Think of a port as a 'door' on a building with thousands of doors, all with the same street addresss (the
server IP) but each with a unique apartment number (port number). SMTP (Email send) 'lives' behind
door 25. FTP lives behind door 21. Standard Web (HTTP) lives behind door 80. Pop3 (email recieve)
lives behind door 110. And so many more... but Secure Web Traffic (HTTPS) lives behind door 443.

Creating your own SSL Certificate

Page 4Creating your own SSL Certificate - Smug Wimp Tutorials

Certificates. Theirs, yours. Trust.

So how does all this work? Well, the server has a certificate that states that it can provide an SSL
connection to your client. When you connect to the server, part of the connection negotiation is passing
the certificate to your client machine, the Browser will then check with the 'collection of trusted root
certificates' in your computer and if it validates as authentic, your browser will accept a secure
connection to the server.

How does your computer know which certificates to trust? It's usually via your browser, during install
and updates.

For Microsoft Users: https://technet.microsoft.com/en-us/library/cc754841(v=ws.11).aspx

For Macintosh Users: https://support.apple.com/en-us/HT202858

People went through the same steps we are going to take, with much greater oversight and far more
powerful machines, to create a file less than the size of a blank MS Word document. And they paid a
lot to be verified as a trusted root organization. So there is a root. Usually that root will then grant
priviledges to other 'root' qualified companies... for a price. And it trickles down to you and your server.
For a price. Per year, usually.

The 'root server key' holds the private key for every server that it has created a record for. When a
connection to port 443 arrives at a webserver, it establishes a connection via SSL. This is all hardware/
software. But the trust comes into play when your browser goes to create a secure connection, and
asks for credentials from the server. The server supplies its 'public' certificate. The public certificate in
some way jives with the private key that is contained in the root store certificate. If the certificates do
not match, an alert will show bringing a discrepancy to your attention.

Creating your own SSL Certificate

Page 5Creating your own SSL Certificate - Smug Wimp Tutorials

https://technet.microsoft.com/en-us/library/cc754841(v=ws.11).aspx
https://support.apple.com/en-us/HT202858

Creating your own SSL Certificate

Page 6Creating your own SSL Certificate - Smug Wimp Tutorials

When things aren't right

Things need to match up before they can be validated as a legitimate SSL connection. If things don't
match, you get an alert.

Typically this means one of 3 things:

1. The Certificate expired and needs renewal
2. The Server URL on the certificate doesn't match the Server URL requested (name mismatch)
3. The Certificate is not installed in your Root Store

In these cases, it's best to examine the certificate before proceeding, or else just do not proceed.

Creating your own SSL Certificate

Page 7Creating your own SSL Certificate - Smug Wimp Tutorials

Expired Certificate, for Example

Oddly enough, when I thought about doing this tutorial, my SSL cert on my main server expired. How
fortunate. When I went to view my site, it gave me a dialog. Of course, I was pretty sure I knew what
happened, but I always check to be sure. And sure enough, my certificate expired.

Creating your own SSL Certificate

Page 8Creating your own SSL Certificate - Smug Wimp Tutorials

Name Mismatch, For Example.

My certificate was issued to 'www.marianasgps.com'. The way the certificate was created, means that
"www.marianasgps.com" is the ONLY valid server address assigned to this certificate. This is what
you'll see if you try to access 'https://apps.marianasgps.com'

Creating your own SSL Certificate

Page 9Creating your own SSL Certificate - Smug Wimp Tutorials

Not in Root Store, For Example

Creating your own SSL Certificate

Page 10Creating your own SSL Certificate - Smug Wimp Tutorials

Obtaining Open SSL

You'll need Open SSL. There are various places to get it from, and Open SSL themselves do not
'advocate' any one vendor. Still, it's better to get something linked off their website.

https://wiki.openssl.org/index.php/Binaries

The safest way to get Open SSL is to download from openssl.org and compiling it yourself.

https://www.openssl.org/source/

The Windows version I use I obtained from here: http://slproweb.com/products/Win32OpenSSL.html

And regardless of which platform you're on, it's going to be a command line experience, so buckle up
Ringo.

Creating your own SSL Certificate

Page 11Creating your own SSL Certificate - Smug Wimp Tutorials

https://wiki.openssl.org/index.php/Binaries
https://www.openssl.org/source/
http://slproweb.com/products/Win32OpenSSL.html

What are we doing here?

We're doing a number of things.

• Creating a Private Key for the Server (This key keeps a record of all certificates that you create,
and it must not be lost or comprimised)

• Creating a Server Certificate Authority (This is the root certificate that establishes the server
identity according to 'you'. People need to trust your certificates, ie trust 'you', before they can
install these certificates on their machines. all certificates you create will be based off this root
certificate.

When those two files are created, they are the most important files you can imagine, if you're doing this
for more than fun. They, in essence, represent 'YOU', and the ability for you to safeguard that
information. Now, genuinely, for folks like you and I, there isn't much at risk. For a Bank or an
Insurance Company, a breach of security could cost millions of dollars.

Once that is done, your server has an identity, and the server can 'create' SSL certificates from
requests. The Machine used to issue the SSL Certificates does not have to be the same server the
service is on. In fact, you actually don't want it on the same machine. Again, in all those professional
places, you have locked doors and sealed buildings and armed guards and all kinds of crazy stuff to
ensure that the root credentials cannot be comprimised.

This is the part where you want to take your 'credentials' and put them on a USB Stick, and place it in a
fireproof safe, safe deposit box, or buried with the tomato plants in the garden. The thing is, keep it
safe. Those are your 'root' credentials and similar to financial information, hackers can use these files to
clone your server 'identity'. Bad Juju.

Now that your Certificate Authority is up and running, it's time to

• Create a Certificate Request (You have to create a request with lots of information about the
target server in the form of a CSR before you can grant one.)

• Create a Certificate from a Request (Creating the certificate for the requested entity)

For this example, I'm going to do 'everything' on the same machine. But again, 'best practices' require
you to have all kinds of separation so that the credentials cannot be comprimised. It all comes down to
risk management. What are you willing to do? How far are you willing to go? But for now, for training
purposes, let's do it on the same machine.

Creating your own SSL Certificate

Page 12Creating your own SSL Certificate - Smug Wimp Tutorials

Creating your own SSL Certificate

Page 13Creating your own SSL Certificate - Smug Wimp Tutorials

SSL Configuration File (sslconf.txt)

I named it sslconf.txt, you can name it whatever you want. But for the moment, that is the filename we
are going to refer to. Keep it straight.

The SSL Conf file is, of course, the basic configuration for your certificates. All of them. So make sure
the information is correct.

1. The name of your website keyfile. unique. important.
2. Your ISO 2 Letter Country Designator
3. Your City Name
4. Your Company Name
5. Your Name
6. Your Email Address

save it into the same directory as your openssl.exe file

Creating your own SSL Certificate

Page 14Creating your own SSL Certificate - Smug Wimp Tutorials

Creating your own SSL Certificate

Page 15Creating your own SSL Certificate - Smug Wimp Tutorials

Generating your server key

This will be your server identity. This is the important one, because from this all else is created. Protect
this. Keep it safe. And most important, keep it.

• Open a Dos Prompt.
• Navigate to the OpenSSL directory.
• At the dos prompt type: openssl genrsa -des3 -out yourserverkey.pem 2048
• Type and retype a passphrase. Please please please remember it.
• Your Server Key file is created in the openssl directory. A record of all the certs you create for

others will be kept in this file.

It's great for testing and all, but be sure to rename 'yourserverkey.pem' to something a bit more
germane. (domain_dot_com_certificate_server_key.pem)

Creating your own SSL Certificate

Page 16Creating your own SSL Certificate - Smug Wimp Tutorials

Generating your Server Root Certificate

This creates your Server Root Certificate. This is the 'authority' that allows you to create 'child'
certificates for other machines. 'If' they trust you.

• Still got your dos prompt open? Good. If not, reopen one, get back to the openssl directory.
• At the dos prompt type: openssl req -new -x509 -keyout yourserverkey.pem -out

yourserver.crt -config sslconf.txt -days 365
• type and retype the server key passphrase (so it can write it's first certificate record and private

key, your root cert, into the file)
• Edit or Accept the values presented to you
• Your Server Root Certificate is now available in your openssl directory. Make a copy of it and

your key, and hide them someplace safe.

The last value '365' as you may guess, is the number of days the certificate will be valid. How do you
change it? You change it. I'm not sure what the maximum value allowed is, but I usually create my
server certs for about 5 years.

The reason a lot of vendors allow only a 1 year certificate is usually policy based. It's all about trust, and
risk management. They want to make sure that nothing with the server has changed over the last year.
Oh, and making more money is also a driving force. It takes no more than a simple edit to change 365,
to 1825 (5 years). But there you go. If it were easy, everyone would be doing it.

Creating your own SSL Certificate

Page 17Creating your own SSL Certificate - Smug Wimp Tutorials

Creating your own SSL Certificate

Page 18Creating your own SSL Certificate - Smug Wimp Tutorials

Generating a Server Certificate Request

This example will be using a webserver for the signing request. But it could be any kind of server; the
only real requirement is to get the FQDN or IP Address correct.

• At the dos prompt, type: openssl req -new -nodes -keyout mywebserver.key -out
mywebserver.csr

• Type the appropriate value for your country.
• Type the appropriate value for your State or Province
• Type the appropriate value for Your City
• Type the appropriate value for your Company or Organization
• Type the appropriate value for your Unit or Department Name
• Type the appropriate value for the server FQDN (www.yourserver.com)
• Type the appropriate value for the contact email address
• Create a new passphrase for this request. Different than your server key passphrase.
• Type the appropriate value for an optional company name, if appropriate.

The Certificate Signing Request, as well as the Server (webserver, not certificate server) key is created
in the openssl directory.

Creating your own SSL Certificate

Page 19Creating your own SSL Certificate - Smug Wimp Tutorials

Creating your own SSL Certificate

Page 20Creating your own SSL Certificate - Smug Wimp Tutorials

Creating the Certificate from a CSR

At the dos prompt

openssl x509 -req -days 365 -in server.csr -CA yourserver.crt -CAkey certServer.pem -
CAcreateserial -out server.crt

• server.csr is the CSR you just created.
• yourserver.crt is the Certificate Server Root Certificate
• yourserverkey.pem is the Certificate Server key pem file
• server.crt is the name for your new Web Server SSL Certificate.

If you want more than a year, now is the time to do it. Adjust the -days value accordingly.

After you've created your cert, you can take a look at the values. Ensure they are correct and reflect
desired configuration. Especially with the FQDN.

Creating your own SSL Certificate

Page 21Creating your own SSL Certificate - Smug Wimp Tutorials

Creating your own SSL Certificate

Page 22Creating your own SSL Certificate - Smug Wimp Tutorials

An interesting trick...

At my home, I have a static IP address, so that I can run services from my home network and access
them consistantly from anywhere. In my DNS files, I've created a subdomain, "test" that I created an
entry for. So when I type 'test.mydomain.com' it comes to my home router, and from there, it gets
filtered and directed. Nothing special there.

But... lets say I have a test webserver on my internal network at IP Address '192.168.1.200'. If it's a
windows server, edit your 'hosts' file (Windows/System32/Drivers/etc/) you will need admin priviledges
to edit this file. Add an entry with your 'internal' ip address, with the FQDN of the 'test' server
(test.yourdomain.com, or whatever it really is). If you do this, the certificate you generate can use the
domain name rather than an IP Address for the certificate hostname. It works like a treat.

If you're not running windows, the same concept should apply, just find your particular 'hosts' file and
make the same changes.

Creating your own SSL Certificate

Page 23Creating your own SSL Certificate - Smug Wimp Tutorials

Where from here?

From here, you take your server certificate and install it into your server. There are many different
servers, and all have already been well documented with respect to using an SSL certificate. I won't
repeat it here.

But I hope this got you moving in the right direction, or at least cleared a few things up about how all this
works, and why it does.

Feel free to ask questions in the BT Forums.

Cheers!

-- Smug

Creating your own SSL Certificate

Page 24Creating your own SSL Certificate - Smug Wimp Tutorials

Creating your own SSL Certificate

Page 25Creating your own SSL Certificate - Smug Wimp Tutorials

	Excuse me, what in the heck are we talking about?
	A Quick word about 'Ports'
	Certificates. Theirs, yours. Trust.
	When things aren't right
	Expired Certificate, for Example
	Name Mismatch, For Example.
	Not in Root Store, For Example
	Obtaining Open SSL
	What are we doing here?
	SSL Configuration File (sslconf.txt)
	Generating your server key
	Generating your Server Root Certificate
	Generating a Server Certificate Request
	Creating the Certificate from a CSR
	An interesting trick...
	Where from here?

